ESD問(wèn)題的通用診斷分析方法
更新時(shí)間:2024-03-12 點(diǎn)擊次數:319
靜電放電(ESD)能導致電子產(chǎn)品出現器件損壞和高頻干擾兩種模式的失效,但由于ESD波形和傳輸路徑無(wú)法觀(guān)測而缺乏有效的ESD問(wèn)題解決方案。利用波形發(fā)生器定性地模擬靜電放電頻譜,使用頻譜儀測量?jì)炔侩娐否詈系降念l譜,能夠在不損壞器件的情況下定量評估ESD對內部電路的注入能力從而分析出ESD傳輸路徑,是一種可以用于器件損壞ESD問(wèn)題分析的方法。模擬ESD頻譜進(jìn)行直接注入也能復現靜電干擾失效的現象,能夠探測定位內部敏感電路,是解決靜電干擾型問(wèn)題的高效方法。防靜電器件性能的評估方法能夠篩選出合適的保護器件給出針對性的解決方案。實(shí)踐證明運用這三種方法能夠高效解決ESD問(wèn)題,也為診斷分析脈沖干擾類(lèi)問(wèn)題的提供了新的思路和方法,在此對該方法的原理和操作進(jìn)行簡(jiǎn)要介紹給大家作為參考。1. ESD放電波形與ESD頻譜模擬
干擾脈沖的時(shí)域波形和頻域頻譜對于分析脈沖的破壞力和干擾能力很重要。波形電壓越高持續時(shí)間越長(cháng)內阻越小則脈沖能量越大,而上升沿越快半波時(shí)間越長(cháng)則頻譜越寬。靜電放電屬于脈沖型尖峰電壓沖擊,持續時(shí)間很短但峰值電壓幅度很高,瞬時(shí)能量相比于連續波高出多個(gè)數量級,具備很強的破壞力。下圖是標準的ESD靜電波形,上升沿0.8-1.2nS ,波形半波時(shí)間30nS。靜電的破壞力集中在峰值電壓,而頻譜的干擾能力集中在上升沿和幾十納秒的半波時(shí)間。圖一 IEC61000-4-2標準靜電放電校準波形靜電問(wèn)題分析有兩大難點(diǎn):一是探頭和測量設備不能實(shí)測電路內部靜電脈沖;二是無(wú)法使用靜電槍直接對電路內部放電進(jìn)行診斷分析。而波形發(fā)生器可以幫助解決這兩個(gè)問(wèn)題:將脈沖信號轉換為持續信號能夠解決路徑分析問(wèn)題,用小信號替代靜電的高壓脈沖能夠安全的用于內部注入。如下圖是波形發(fā)生器輸出10MHz,2nS上升沿方波,5V峰峰值的時(shí)域波形得到的頻譜,該波形能夠模擬出靜電波形的上升沿和高頻頻譜分量同時(shí)又沒(méi)有高壓破壞性。圖二,波形發(fā)生器模擬靜電波形的實(shí)測頻譜真實(shí)靜電頻譜相比模擬頻譜在100MHz以上的高頻幅度更大,頻譜寬度更寬,但速度太快無(wú)法用頻譜儀觀(guān)測。模擬頻譜的持續信號雖然頻寬和幅值低于ESD真實(shí)信號但能夠被頻譜儀觀(guān)測,而且具備足夠測量深度以便測量出傳輸衰減,最重要的是信號對于整個(gè)低壓電路都是安全的,從而可以對內部電路進(jìn)行細致的評估分析。
2. 利用ESD模擬頻譜進(jìn)行路徑分析
由于ESD干擾頻譜和脈沖的路徑是同一的,通過(guò)確定干擾頻譜傳輸路徑也就能分析出靜電脈沖的路徑,這就是通過(guò)模擬頻譜探測能夠實(shí)現靜電路徑分析的基本原理。這種方法對于分析器件損壞問(wèn)題非常有意義。上圖是一個(gè)ESD損壞失效案例的一般等效模型,該單板端口施加6kV接觸放電時(shí)100%概率造成內部一個(gè)功能芯片損壞。損壞芯片與注入端口之間無(wú)電路連結,無(wú)法進(jìn)行耦合路徑分析,且由于更換芯片非常耗時(shí)因此該問(wèn)題采用傳統方法解決難度很大,需要采用更高效的方法。上圖是采用模擬頻譜分析靜電注入路徑的示意圖。端口注入持續的模擬頻譜(10MHz,2nS上升沿方波,5V峰峰值),采用隔直之后的探針連結頻譜儀觀(guān)測內部電路耦合到的頻譜幅值,探針測試點(diǎn)和端口注入點(diǎn)之間的頻譜幅度差值就是兩點(diǎn)之間靜電傳輸損耗,也就可評估出靜電通過(guò)傳導和耦合進(jìn)入到內部電路的程度。圖五 模擬靜電注入探測電路內部耦合能力的設備和布置我們以上圖的布置進(jìn)行單板靜電耦合能力評估,采用插損夾具和金屬板作為參考面,注入和接收阻抗選擇50Ω,通過(guò)觀(guān)測頻譜的衰減判斷靜電在電路內部的傳輸損耗:如衰減明顯時(shí)可以認為該路徑對靜電能量傳輸有阻礙作用,如濾波器、隔離器件、電容電阻等器件管腳;而未觀(guān)察到頻譜衰減的電路可以認為靜電能以良好通路注入到該部分。實(shí)際觀(guān)測發(fā)現板上很多位置得到0衰減的耦合,尤其是受損芯片某引腳全頻段未觀(guān)測到任何衰減,可以斷定靜電能從端口完()全施加到該引腳并損壞芯片。該案例中對該引腳增加相應的電容作為靜電吸收方案后可以觀(guān)測到頻譜有明顯的衰減(10dB下降),意味著(zhù)靜電注入對該電路的耦合能力明顯下降,實(shí)測端口的靜電能力由6kV 100%損壞到10kV觀(guān)測不到損壞現象。3. 利用波形發(fā)生器進(jìn)行ESD干擾問(wèn)題診斷分析方法
對于ESD干擾失效問(wèn)題,利用模擬頻譜進(jìn)行直接注入依然是高效的診斷分析方法,能夠快速復現問(wèn)題并且對內部電路進(jìn)行定點(diǎn)分析,最終快速找到并驗證解決方案。圖六 模擬靜電脈沖注入分析靜電干擾問(wèn)題示意圖靜電干擾的失效本身就是由靜電的高頻頻譜能量引起的,采用波形發(fā)生器模擬該高頻能量進(jìn)行注入能夠大概率的復現到相同的干擾現象。波形發(fā)生器采用10MHz方波脈沖50%占空比,1-10V峰峰值輸出能夠模擬出ESD在10-300MHz頻段的頻譜和幅值(針對不同問(wèn)題可以調整模擬波形參數進(jìn)行問(wèn)題復現),通過(guò)電容進(jìn)行隔離直流之后利用金屬探針就能對電路內部進(jìn)行注入探測。這種方法不依賴(lài)其他資源而且可以在研發(fā)場(chǎng)地方便的進(jìn)行(只需要使用波形發(fā)生器、示波器、頻譜儀、接地參考板等),可以讓研發(fā)工程師非常從容地去分析和優(yōu)化解決方案。4. 防靜電器件性能的評估方法
防靜電器件性能評估方法是2022年提出并發(fā)表于電磁兼容公眾號的一種新方法,由于對尋找ESD問(wèn)題的解決方案有很強的指導意義,在此結合診斷分析再進(jìn)行簡(jiǎn)要介紹。防靜電器件性能評估系統包括靜電槍、同軸夾具、3dB衰減器、同軸電纜以及示波器。標準靜電槍作為靜電源,通過(guò)比較初始電壓波形和附加防靜電器件之后的電壓波形就能分析出器件的抑制效果。
圖上可以看出TVS對靜電注入脈沖波形產(chǎn)生截止作用,意味著(zhù)TVS已經(jīng)觸發(fā)保護功能將靜電能量泄放,關(guān)斷保護后TVS存在殘壓,該實(shí)測結果與TVS規格吻合。TVS由于很小的結電容可以用于信號端口的ESD防護。 | |
8000V靜電注入SMD 4.7uF 完()全吸收 | 4000V靜電注入引線(xiàn)聚乙烯薄膜 2.2uF高效吸收 |
| |
4000V靜電注入引線(xiàn)瓷片100nF 高效吸收 | 8000V靜電注入引線(xiàn)瓷片 100nF高效吸收 |
| |
800V靜電注入引線(xiàn)瓷片 1nF 略有效果 | 1000V靜電注入引線(xiàn)瓷片 1nF 略有效果 |
不同電容的測試結果我們可以看出電容對靜電的吸收效果有影響的是材質(zhì)、引線(xiàn)ESL和電容容量。100nF以上的貼片電容能夠完()全吸收靜電的能量,1nF 貼片電容就能有一些吸收效果,其他材質(zhì)電容吸收效果稍遜于貼片電容,因此對于能夠增加電容的電路建議優(yōu)選貼片電容方案,不能使用電容的電路選擇TVS或ESD吸收器件。5. 小結
本案例通過(guò)模擬頻譜注入分析路徑的方法找到芯片上對靜電脈沖耦合度最大的引腳,通過(guò)防靜電器件實(shí)測數據的指導對該引腳增加貼片電容分別對電源和地進(jìn)行靜電能量吸收,最終快速地定位和解決了該靜電問(wèn)題。波形發(fā)生器脈沖模擬注入的方法在解決各類(lèi)脈沖型抗擾度問(wèn)題(ESD, EFT, SURGE等)有很大的應用潛力。將瞬態(tài)脈沖轉化為持續頻譜的再進(jìn)行耦合探測的方法能夠有效分析ESD器件損壞失效問(wèn)題,模擬干擾頻譜注入也能夠實(shí)現ESD干擾失效類(lèi)問(wèn)題的精準定位,防靜電器件性能測試的方法對于ESD器件選型有指導意義,這三種措施的綜合應用有可能成為ESD問(wèn)題的通用診斷分析方法。